

DICHIARAZIONE

PIERO CANDOLI

Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

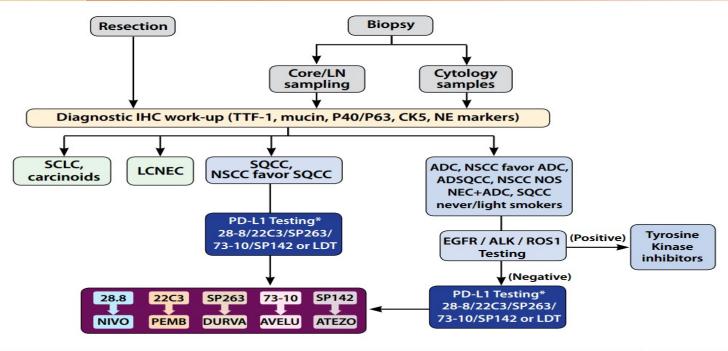
- · Posizione di dipendente in aziende con interessi commerciali in campo sanitario Nessuna
- Consulenza ad aziende con interessi commerciali in campo sanitario Niente da dichiarare
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario Niente da dichiarare
- Partecipazione ad Advisory Board AZ, COOK, PENTAX
- Titolarità di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario Niente da dichiarare
- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario Niente da dichiarare

La stadiazione mediastinica nel NSCLC III° stadio inoperabile

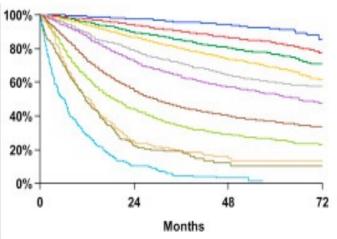
PIERO CANDOLI, MD

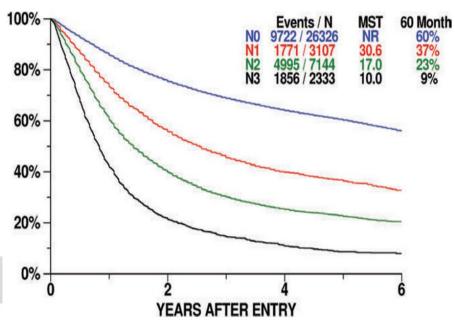
Dipartimento Cardio Toraco Vascolare UOC Pneumologia Interventistica IRCCS - Azienda Ospedaliero-Universitaria Bologna

NSCLC or not NSCLC??



THAT WHASTISETELE EXTESTION....


Figure 1. Immunohistochemistry (IHC) tests that are integral to diagnostic considerations in the treatment of patients with of lung cancer. LN = lymph node, TTF-1 = thyroid transcription factor-1, CK5 = cytokeratin 5, NE = neuroendocrine, SCLC = small cell lung cancer, LCNEC = large cell neuroendocrine carcinoma, SQCC = squamous cell carcinoma, NSCC = non-small cell carcinoma, ADC = adenocarcinoma, ADSQCC = adenosquamous cell carcinoma, NEC = neuroendocrine cancer, PD-L1 = programmed cell death ligand-1, TKI = tyrosine kinase inhibitor, EGFR = epidermal growth factor receptor, ALK = anaplastic lymphoma kinase, NIVO = nivolumab, PEMB = pembrolizumab, DURVA = durvalumab, AVELU = avelumumab, ATEZO = atezolizumab, LDT = laboratory developed test. *Only the 22C3 assay is required as a companion diagnostic for first-line and second/third-line pembrolizumab therapy. The other assays are for clinical trials or complementary diagnostics.



STAGE	Т	N	М	
Occult carcinoma	TX	N0	МО	
0	Tis	N0	MO	
IA1	T1mi	N0	MO	
	T1a	N0	MO	
IA2	T1b	N0	MO	
IA3	T1c	N0	MO	
IB	T2a	N0	MO	
IIA	T2b	N0	MO	
IIB	T1a	N1	MO	
	T1b	N1	MO	
	T1c	N1	MO	
	T2a	N1	MO	
	T2b	N1	MO	
	T3	N0	MO	
IIIA	T1a	N2	MO	
	T1b	N2	MO	
	T1c	N2	MO	
	T2a	N2	MO	
	T2b	N2	MO	
	T3	N1	MO	
	T4	N0	MO	
	T4	N1	MO	
IIIB	T1a	N3	MO	
	T1b	N3	MO	
	T1c	N3	MO	
	T2a	N3	MO	
	T2b	N3	MO	
	T3	N2	MO	
	T4	N2	МО	
IIIC	T3	N3	MO	
	T4	N3	MO	
IVA	Any T	Any N	M1a	
	Any T	Any N	M1b	
IVB	Any T	Any N	M1c	

Proposed	Events / N	MST	24 Month	60 Month
IA1	68 / 781	NR	97%	92%
IA2	505 / 3105	NR	94%	83%
IA3	546 / 2417	NR	90%	77%
IB	560 / 1928	NR	87%	68%
IIA	215 / 585	NR.	79%	60%
11B	605 / 1453	66.0	72%	53%
IIIA	2052 / 3200	29.3	55%	36%
***B	1551 / 2140	19.0	44%	28%
IIIC	831 / 986	12.6	24%	13%
IVA	336 / 484	11.5	23%	10%
IVB	328 / 398	6.0	10%	0%

FIGURE 1. Survival curves for cN0, cN1, cN2, and cN3, T-any M0 tumors. The differences of survival between neighboring categories are all statistically significant (p values: between cN0 and cN1, p < 0.0001; between cN1 and cN2, p < 0.0001; between cN2 and cN3, p < 0.0001).

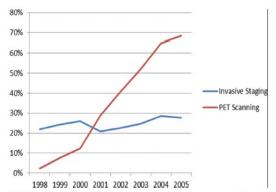
APPROCCIO DIAGNOSTICO AI LINFONODI MEDIASTINICI

TECNICHE NON INVASIVE:

- **CT**
- PET

TECNICHE INVASIVE:

- ENDOSCOPIC (TBNA, EBUS-TBNA, EUS-NA)
- SURGICAL (MEDIASTINOSCOPY/TOMY, VATS)
 TRANSTHORACIC (TTNA)

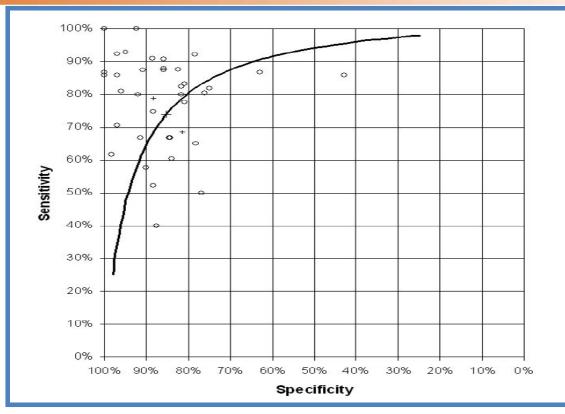


Thoroughness of Mediastinal Staging in Stage IIIA Non-small Cell Lung Cancer

Michael T. Vest, DO,* Lynn Tanoue, MD,* Pamela R. Soulos, MPH,† Anthony W. Kim, MD,‡ Frank Detterbeck, MD,‡ Daniel Morgensztern, MD,§ and Cary P. Gross, MD†

FIGURE 2. Use of PET (positron emission tomography) scanning and invasive staging, 1998 to 2005, in preexpansion registries.

Conclusion: Nearly 80% of Medicare beneficiaries with stage IIIA NSCLC do not receive guideline adherent mediastinal staging; this failure cannot be entirely explained by patient factors or a reliance on PET imaging. Incentives to encourage use of invasive staging may improve care.

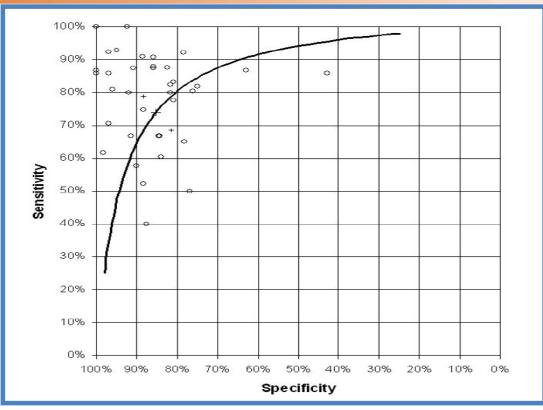


AIRO2022

XXXII CONGRESSO NAZIONALE AIRO XXXIII CONGRESSO NAZIONALE AIRB XII CONGRESSO NAZIONALE AIRO GIOVAN

Radioterapia di precisione per un'oncologia innovativa e sostenibil

SENSITIVITY OF PET SCAN FOR MEDIASTINAL LNs: SENSITIVITY: 74% (95% CI 69-79%)

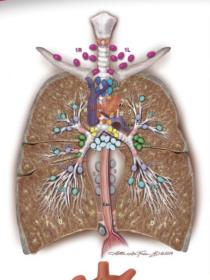


AIRO2022

XXXII CONGRESSO NAZIONALE AIRO XXXIII CONGRESSO NAZIONALE AIRB XII CONGRESSO NAZIONALE AIRO GIOVAN

Radioterapia di precisione per un'oncologia innovativa e sostenibile

SPECIFICITY OF PET SCAN FOR MEDIASTINAL LNs: 85% (95% CI 82-88%)


AIRO2022

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Nodal Chart-8th Edition

Supraclavicular zone
1 Low cervical, supraclavicular,
and sternal notch nodes

SUPERIOR MEDIASTINAL NODES

Upper zone 2R Upper Paratracheal (right)

2L Upper Paratracheal (left)

3a Prevascular

3p Retrotracheal

4R Lower Paratracheal (right)

4L Lower Paratracheal (left)

AORTIC NODES

AP zone

5 Subaortic

6 Para-aortic (ascending aorta or phrenic)

INFERIOR MEDIASTINAL NODES

Subcarinal zone

7 Subcarinal

Lower zone

8 Paraesophageal (below carina)

9 Pulmonary ligament

N1 NODES

Hilar/Interlobar zone

10 Hilar

11 Interlobar

Peripheral zone


12 Lobar

13 Segmental

15 Segimental

14 Subsegmental

BOLOGNA, 25-27 NOVEMBRE PALAZZO DEI CONGRESSI

Mediastinoscopy vs Endosonography for Mediastinal Nodal Staging of Lung Cancer: A Randomized Trial

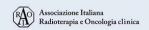
Jouke T. Annema; Jan P. van Meerbeeck; Robert C. Rintoul; et al. *JAMA*. 2010;304(20):2245-2252 (doi:10.1001/jama.2010.1705)

241 patients randomized to endosonography (n=123) OR mediastinoscopy (n=118)

Prevalence of N2/3 metastases: 49%

Sensitivity for N2 (primary outcome):

endosonography: 85%


mediastinoscopy: 79%

endosonography followed by mediastinoscopy: 94%

Unnecessary thoracotomies (secondary outcome):

endosonography: 7%

mediastinoscopy: 21%

CHEST

Supplement

DIAGNOSIS AND MANAGEMENT OF LUNG CANCER, 3RD ED: ACCP GUIDELINES

Methods for Staging Non-small Cell Lung Cancer

Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines

Gerard A. Silvestri, MD, FCCP; Anne V. Gonzalez, MD; Michael A. Jantz, MD, FCCP; Mitchell L. Margolis, MD, FCCP; Michael K. Gould, MD, FCCP; Lynn T. Tanoue, MD, FCCP; Loren J. Harris, MD, FCCP; and Frank C. Detterbeck, MD, FCCP

FIGURE 16. [Section 4.3.2.5] Real-time EBUS-TBNA and EUS-NA of the mediastinum in patients with lung cancer.

First Author	Year	No.	Stage	Thoro	Prev	Sens	Spec ^a	PPV ^a	NPV
Vilmann ³⁵³	2005	31	cN0-3	sys	65	100	$(100)^{a}$	$(100)^{a}$	100
Annema ²²⁸	2010	123	cN1-3	sys	54	82	$(100)^{a}$	$(100)^{a}$	80
Herth ³⁰⁷	2010	139	cN1-3	sel	52	96	$(100)^{a}$	$(100)^{a}$	96
Ohnishi ³⁵²	2011	110	cN0-3	sys	35	72	$(100)^{a}$	$(100)^{a}$	87
Hwangbo ³³⁵	2010	150	cN2-3	sys	31	91	$(100)^{a}$	$(100)^{a}$	96
Wallace ²⁹⁶	2008	138	cN2-3	sys	30	93	$(100)^{a}$	$(100)^{a}$	97
Szlubowski ³⁰⁸	2010	120	cN0	sel	22	68	98	91	91
Median: prevalence 40-65									96
Median: prevalence 20-39									94
Summary: med	Summary: median 811 33						$(100)^{a}$	$(100)^{a}$	96

Chest X-Ray

Computer Tomography (CT)

Positron Emission Tomography (PET)

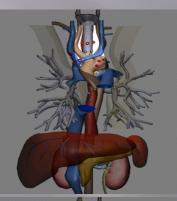
Bronchoscopy

Transthoracic Needle Aspiration (TTNA)

Transbronchial Needle Aspiration (TBNA)

Transoesophageal Endosonography with Fine Needle Aspiration (FUS.FNA)

EBUS guided TBNA (EBUS Miniature Probes)


EBUS-Transbronchial Needle Aspiration under direct ultrasonic vision (EBUS-TBNA)

Mediastinoscopy

Thoracoscopy (VATS)

Thoracotomy

Chest X-Ray

Computer Tomography (CT)

Positron Emission Tomography (PET)

Bronchoscopy

Transthoracic Needle Aspiration (TTNA)

Transbronchial Needle Aspiration (TBNA)

Transoesophageal Endosonography with Fine Needle Aspiration (EUS-FNA)

EBUS guided TBNA (EBUS Miniature Probes)

EBUS-Transbronchial Needle Aspiration under direct ultrasonic vision (EBUS-TBNA)

Thoracoscopy (VATS)

Thoracotomy

Computer Tomography (CT)

Positron Emission Tomography (PET)

Bronchoscopy

Transthoracic Needle Aspiration (TTNA)

Transbronchial Needle Aspiration (TBNA)

Transoesophageal Endosonography with Fine Needle Aspiration (EUS-FNA)

EBUS guided TBNA (EBUS Miniature Probes)

BUS-Transbronchial Needle Aspiration under direct ultrasonic

Mediastinoscopy

Thoracoscopy (VATS)

Thoracotomy

MEDIASTINOSCOPIA

EBUS-TBNA

Staging Strategies' skills

- Competence is referred to the strategies in planning every single case, too.
- To make an accurate staging with EBUS/EUS, it is necessary to follow a precise order of sampling and depends on the side and the localization of tumor determined by CT scan.
- Distant metastases (M1) should be excluded first, followed by lymph node staging in the order N3 (controlateral lymph nodes) → N2 (ipsilateral mediastinal and subcarinal lymph nodes) → N1 (ipsilateral hilar lymph nodes)

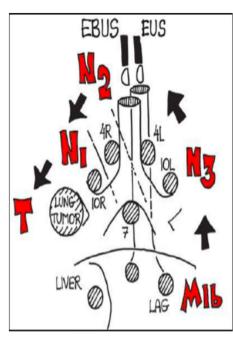
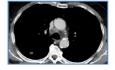
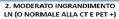


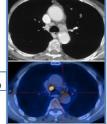
Figure 4 -Order of sampling

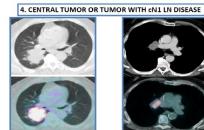
Candoli P. et al. Panminerva Medica 2018

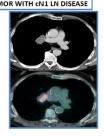
Remark: This recommendation is based on the availability of these technologies (EBUS-NA, EUS-NA or combined EBUS/EUS-NA) and the appropriate experience and skill of the operator.

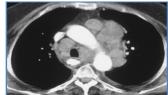

Remark: The reliability of mediastinal staging may be more dependent on the thoroughness with which the procedure is performed than by which test is used.

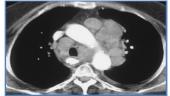






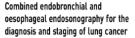

ACCP SCENARIOS





. .

1. INFILTRATIVE LN DISEASE (N2-N3)



. . .

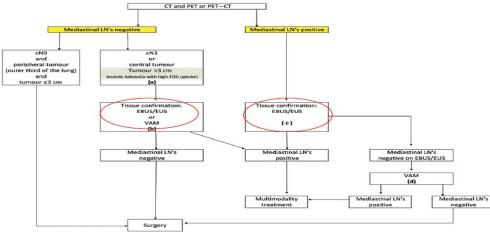
STAGING DEL **MEDIASTINO**

European Society of Gastrointestinal Endoscopy (ESGE) Guideline, in cooperation with the European Respiratory Society (ERS) and the European Society of Thoracic Surgeons (ESTS)

Peter Vilmann¹, Paul Frost Clementsen^{2,3}, Sara Colella², Mette Siemsen⁶ Paul De Leyn⁵, Jean-Marc Dumonceau⁶, Felix J. Herth², Alberto Larghi⁸, Enrique Vazquez-Sequeiros⁹, Cesare Hassan⁸, Laurence Crombag¹⁰, Daniël A. Korevaar¹¹, Lars Konge³ and Jouke T. Annema¹⁰

CrossMark

OR SUSPECTED LUNG CANCER (without distant metastasis)	SUSPECTED LUNG CANCER (without distant metastasis)
Enlarged and/or PET + Mediastinal Nodes	Centrally Located cancer with normal or discrete enlarged nodes regardless PET activity
Enlarged and/or PET + Hilar Nodes	
Small (<1 cm Short axis) and PET – med. and hilar nodes with PET + primary Tumor 3 cm or above	Pts with centrally located cancer with invasion of mediastinum might require EBUS to obtain diagnosis

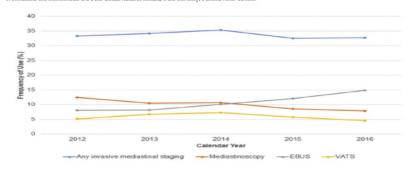

PERIPHERAL CONFIRMED | CENTRAL CONFIRMED OR

European Journal of Cardio-Thoracic Surgery 45 (2014) 787-798 doi:10.1093/eicts/ezu028 Advance Access publication 26 february 2014

GUIDELINE

Paul De Leyn^*, Christophe Dooms*, Jaroslaw Kuzdzal*, Didier Lardinois*, Ber Ramon Rami-Porta', Akif Tumas, Paul Van Schill, Frederico Venuta, David Waller, Walter Weder and Marcin Zielinski

- (a): In tumours > 3 cm (mainly in adenocarcinoma with high FDG uptake) invasive staging should be considered
 (b): Depending on local expertise to adhere to minimal requirements for staging
 (c): Endoscopic techniques are minimally invasive and are the first choice if local expertise with EBUS/EUS needle aspiration is available
 (d): Due to its higher NPV, in case of PET positive or CT enlarged mediastinal LN's, videoassisted mediastinoscopy (VAM) with nodal dissection or biopsy
- remain indicated when endoscopic staging is negative. Nodal dissection has an increased accuracy over biopsy

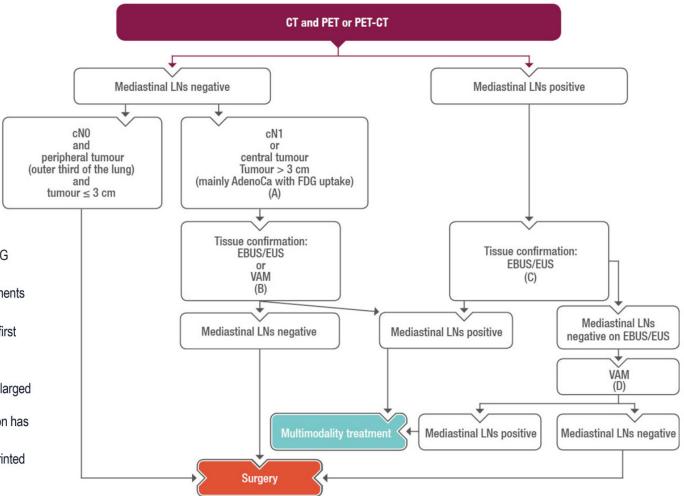

Invasive Mediastinal Staging for Lung Cancer by The Society of Thoracic Surgeons Database Participants

Check for updates

Seth B. Krantz, MD, John A. Howington, MD, Douglas E. Wood, MD, Ki Wan Kim, MD, Andrzej S. Kosinski, PhD, Morgan L. Cox, MD, Sunghee Kim, PhD, Michael S. Mulligan, MD, and Farhood Farjah, MD, MPH

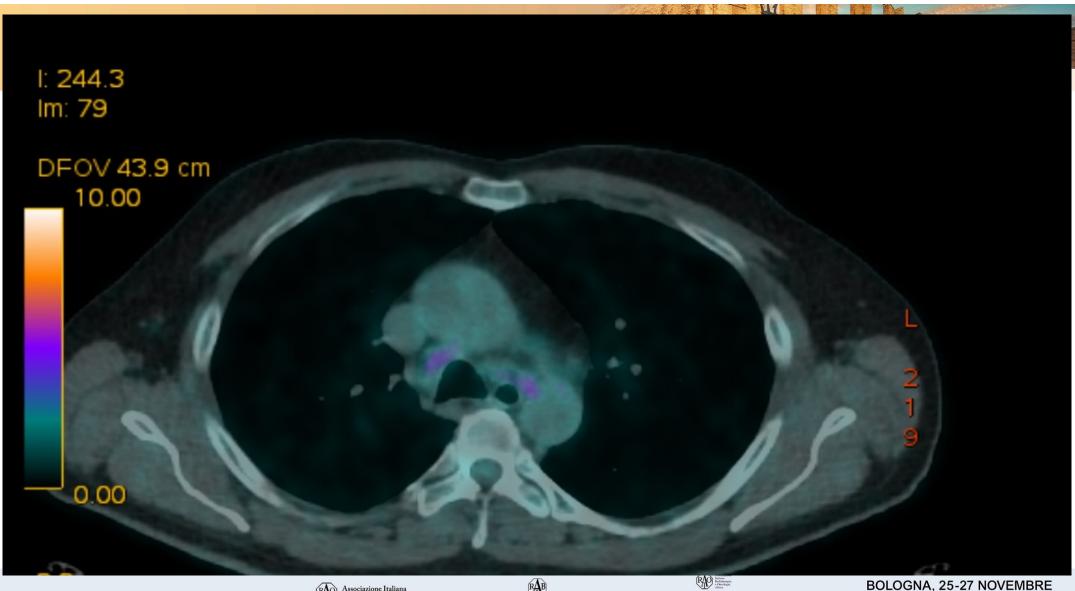
Division of Thoracic Surgery, NorthShore University Health System, Evanston, Illinois; Department of Thoracic Surgery, Saint Thomas Healthcare, Nashville, Tennessee, Division of Cardiothoracic Surgery, University of Washington, Seattle, Washington; and Department of Biostatistics and Bointermatics and Duke Clinical Research Institute, Duke University, Durham, North Cardina.

(Ann Thorac Surg 2018;106:1055-62) © 2018 by The Society of Thoracic Surgeons

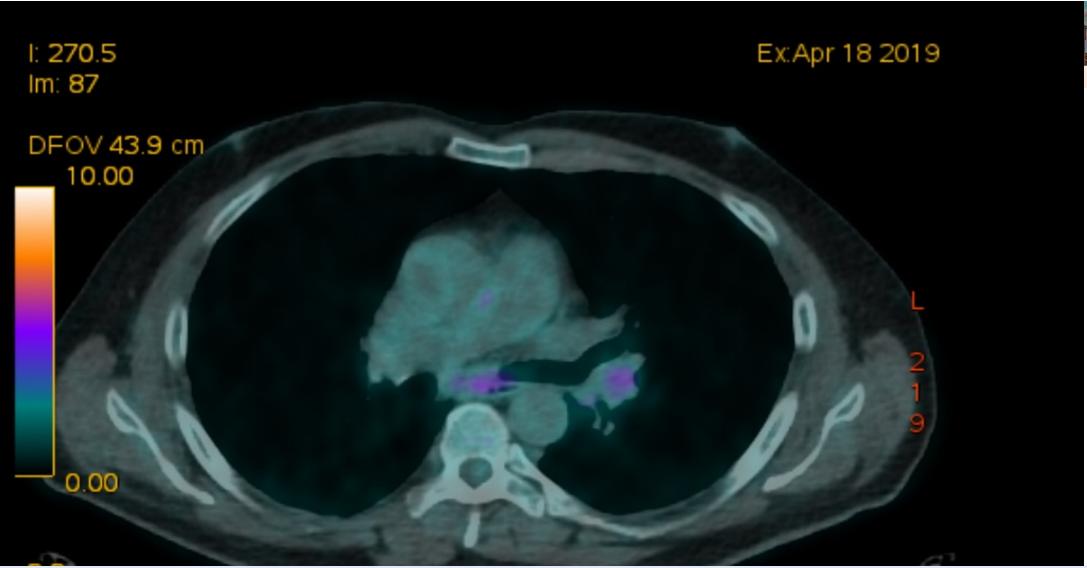

CLINICAL PRACTICE GUIDELINES

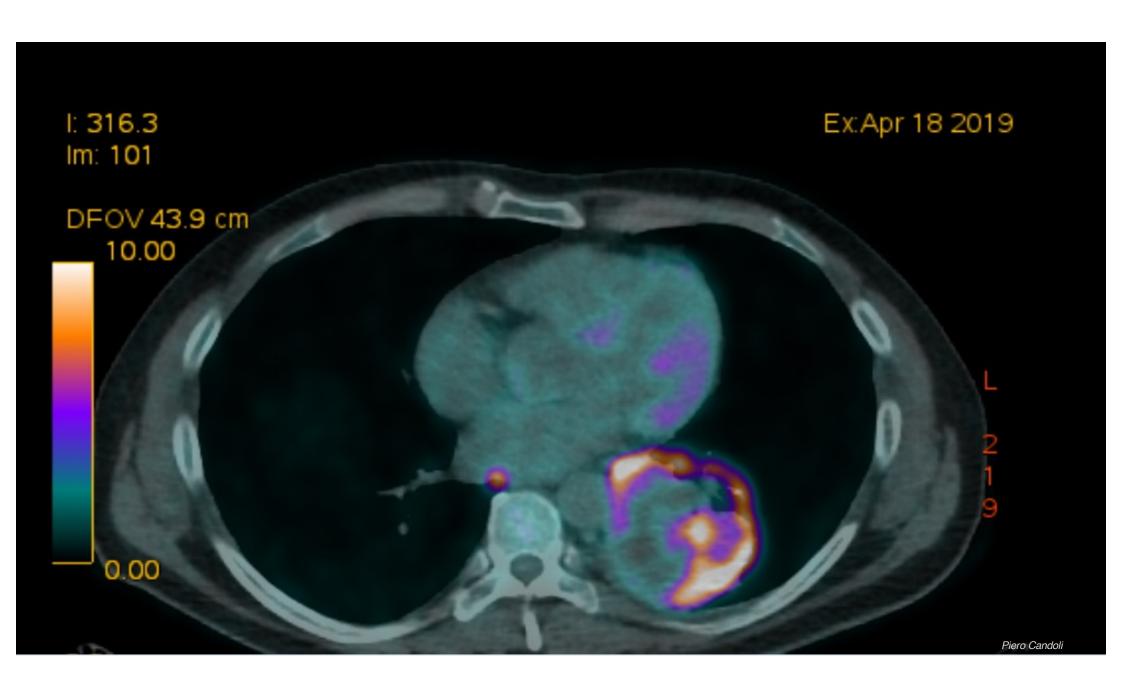
Staging and risk assessment

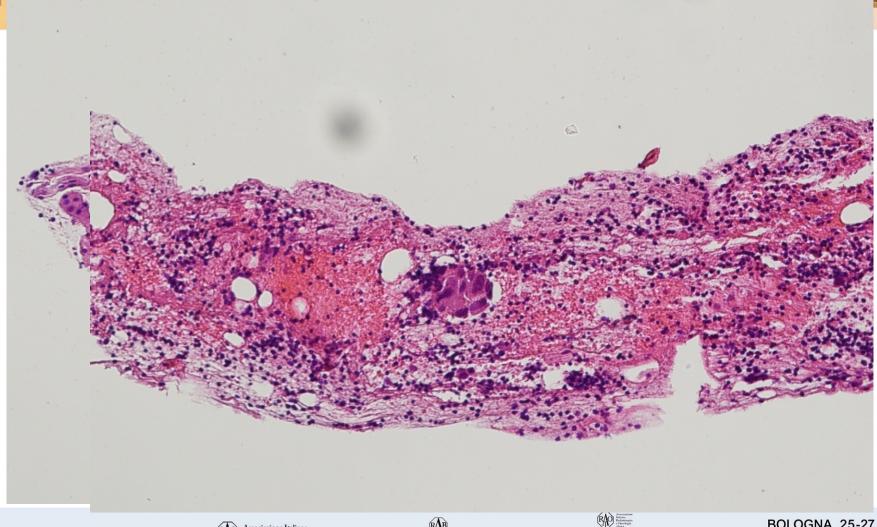
Locoregional LN staging in patients with non-metastatic NSCLC


- (A) In tumours > 3 cm (mainly in adenocarcinoma with high FDG uptake) invasive staging should be considered
- (B) Depending on local expertise to adhere to minimal requirements for staging
- (C) Endoscopic techniques are minimally invasive and are the first choice if local expertise with EBUS/EUS needle aspiration is available
- (D) Due to its higher NPV, in the case of PET-positive or CT-enlarged mediastinal LNs, VAM with nodal dissection or biopsy remain indicated when endoscopic staging is negative. Nodal dissection has an increased accuracy over biopsy

De Leyn P et al. Eur J Cardiothorac Surg 2014;3:787–98. Reprinted with permission.





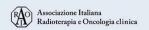


The International Association for the Study of Lung Cancer Lung Cancer Staging Project

Proposals for the Revision of the N Descriptors in the Forthcoming 8th Edition of the TNM Classification for Lung Cancer

Hisao Asamura, MD,* Kari Chansky, MS,† John Crowley, PhD,† Peter Goldstraw, MBChB, FRCS,‡ Valerie W. Rusch, MD,§ Johan F. Vansteenkiste, MD, || Hirokazu Watanabe, MD,¶ Yi-Long Wu, MD,# Marcin Zielinski, MD,** David Ball, MD,†† and Ramon Rami-Porta, MD,‡‡§§ On behalf of the International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee, Advisory Board Members, and Participating Institutions|| ||

N1a, single-station N1 involvement


N1b, multiple-station N1 involvement

N2a1, single-station N2 involvement without N1 (skip metastases)

N2a2, single-station N2 with N1 disease

N2b, multiple-station N2 involvement

N3

Lung cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual.

Rami-Porta R, Asamura H, Travis WD, Rusch VW

- N1a: involvement of a single N1 nodal station;
- N1b: involvement of multiple N1 nodal stations;
- N2a1: involvement of a single N2 nodal station without N1 involvement (skip metastasis);
- N2a2: involvement of a single N2 nodal station with N1 involvement; and
- N2b: involvement of multiple N2 nodal stations.
- Prognosis worsens as the number of involved nodal stations increases, but N1b and N2a1 have the same prognosis.
- This new analysis shows that discreet (one-station) mediastinal nodal disease without N1 disease has the same prognosis as multiple N1 stations.
- Five-year survival rates in the population of patients who underwent complete resection for the different N subcategories are: N1a, 59%; N1b, 50%; N2a1, 54%; N2a2, 43%; and N2b, 38%.

UNFORESEEN N2

Unforeseen N2 disease. Pathologically proven N2 disease at final lung tumor resection and lymph node dissection when previous mediastinal staging showed N0 or N1 disease.

Why endosonography often fails to identify occult N2 disease in cN0/1 NSCLC?

- Left sided tumors (Mets to LNs. #5 and #6)
- Minimal metastatic involvement in small nodes
- Multiple small LNs in the same station/area
- Thoroughness of the staging

Thoroughness of staging

Wich kind size cut-off could be used to prompt aspiration?

Wich lymph node stations need to be explored?

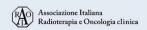
EBUS versus combined EBUS/EUS-B

B-mode findings likely unreliable for lymph nodes < 1 cm

Unforeseen N2 Disease after Negative Endosonography Findings with or without Confirmatory Mediastinoscopy in Resectable Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

Jelle E. Bousema, MD,^a Martijn van Dorp, MD,^b Valentin J. J. M. Noyez, MD,^c Marcel G. W. Dijkgraaf, PhD,^d Jouke T. Annema, MD, PhD,^e Frank J. C. van den Broek, MD, PhD^a,*

2.1 EBUS Study (subgroup) uN2 Total underwent reference standard Zhang et al. 2018¹¹ Coutinho et al. 201712 Talebian et al. (1) 201513 Figueiredo et al. 201514 Clementsen et al. 2014¹⁵ Sakairi et al. 2013¹⁶ Lee et al. 201217 Sanz-Santos et al. 2012¹⁸ 5 Hwangbo et al. 2009¹⁹ Szlubowski et al. 2009²⁰ 16 Lee et al. 200821 Yasufuku et al. 2005²² Meta-analysis Heterogeneity I2=39% (95% CI: 0-69) 0 0.1 0.2 0.3 0.4 0.5 proportion uN2


2.2 EUS								
Study (subgroup)	uN2	Total underwent reference standard						
					_			
Talebian, et al., (3) 2015 ¹³	27	182		-				
Srinivasan, et al., 2012 ²³	3	26	-	•		_		
Talebian, et al., (1) 2010 ²⁴	6	31		-	-		-	
Craanen, et al., 2007 ²⁵	1	10	_	-+				_
Fernandez, et al., 2006 ²⁶	5	42						
Fritscher, et al., 2003 ²⁷	1	15	_	•				
Laudanski, et al., 2001 ²⁸	7	78		-	_			
Meta-analysis	50	384			-			
							\neg	
Heterogeneity I ² =0% (95% CI	: 0-48)		0	0.1	0.2	0.3	0.4	0.5
					proport	ion uN2		

2.3 EBUS plus EUS Study (subgroup) uN2 Total underwent reference standard Talebian, et al., (5) 201513 Dooms, et al., (1) 2015²⁹ Oki, et al., 2014³⁰ Kang, et al., (1) 201431 Kang, et al., (2) 2014³¹ 2 Verhagen, et al., (1) 201332 4 Szlubowski, et al.,(1)2012³³ 5 Szlubowski, et al.,(2)2012³³ 9 Ohnishi, et al., 2011³⁴ 12 Hwangbo, et al., 2010³⁵ Szlubowski, et al., 2010³⁶ 101 Vilmann, et al., 200537 Heterogeneity I2=26% (95% CI: 0-63) 0 0.1 0.2 0.3 0.4 0.5

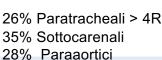
Journal of Thoracic Oncology Vol. 14 No. 6: 979-992

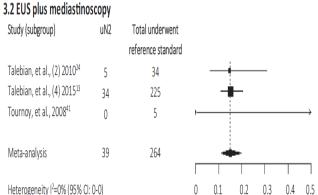
32% Paratracheali > 4R 30% Sottocarenali 22% Paraaortici

9.3 - 9.7 % uN2

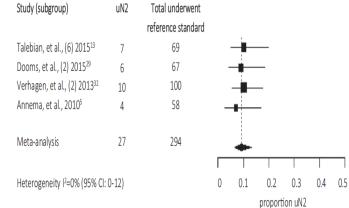
proportion uN2

Unforeseen N2 Disease after Negative Endosonography Findings with or without Confirmatory Mediastinoscopy in Resectable Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

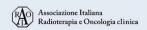

Check for updates


Jelle E. Bousema, MD, Martijn van Dorp, MD, Valentin J. J. M. Noyez, MD, C Marcel G. W. Dijkgraaf, PhD, Jouke T. Annema, MD, PhD, e Frank J. C. van den Broek, MD, PhDa,*

Journal of Thoracic Oncology Vol. 14 No. 6: 979-992 2019


3.3 EBUS plus EUS plus mediastinoscopy

3.1 EBUS plus mediastinoscopy Study (subgroup) Total underwent reference standard Warren & Hagaman 2016³⁸ Dziedzic, et al., 2015³⁹ 30 647 Talebian, et al., (2) 201513 80 Defranchi, et al., 2010⁴⁰ 53 788 Meta-analysis Heterogeneity I²=88% (95% CI: 71-95) 0.1 0.2 0.3 0.4 0.5 proportion uN2



0.3 0.4 0.5 proportion uN2

9.9 % uN2

Unforeseen N2 Disease after Negative Endosonography Findings with or without Confirmatory Mediastinoscopy in Resectable Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

Check for updates

Jelle E. Bousema, MD,^a Martijn van Dorp, MD,^b Valentin J. J. M. Noyez, MD,^c Marcel G. W. Dijkgraaf, PhD,^d Jouke T. Annema, MD, PhD,^e Frank J. C. van den Broek, MD, PhD^a,*

	Lymph Node				Complications				
Study	Stations Targeted for Assessment	Mean No. of Stations Subjected to Biopsy	Mean No. of Lymph Nodes Subjected to Biopsy	n	Overall	Laryngeal Recurrent Nerve Palsy	Clavien- Dindo Grade III-IV	Mortality	
Decaluwé et al., 2017 ⁴²	4R, 7, 4L	3.9 (SD 1.2)	N/S	82	4.9%	2.4%	1.2%	0.0%	
Sayar et al., 2016 ⁴³	2R, 4R, 7, 4L, 2L	4.3 (SD 0.8)	7.9 (SD 2.0)	261	7.7%	1.2%	0.8%	0.0%	
Steunenberg et al., 2016 ⁴⁴	2R, 4R, 7, 4L, 2L	2.8 (SD 1.1)	12.0 (SD 7.0)	102	6.9%	2.9%	3.9%	1.0%	
Citak et al., 2014 ⁴⁵	2R, 4R, 7, 4L, 2L	4.2 (SD 0.8)	7.7 (SD 1.7)	260	5.4%	4.2%	1.2%	0.0%	
Annema et al., 2010 ⁵	2R, 4R, 7, 4L, 2L	4.0 (range 0-5)	N/S	182	6.6%	3.3%	3.3%	0.0%	
Anraku et al., 2010 ⁴⁶	2R, 4R, 7, 4L, 2L	3.6 (SD 1.1)	7.0 (SD 3.2)	104	3.9%	1.0%	1.9%	0.0%	
Leschber et al., 2008 ^{47,a}	2R, 4R, 7, 4L, 2L	N/S	7.6 (range 3-25)	234	4.3%	2.1%	1.3%	0.0%	
Kuzdzal et al., 2007 ⁴⁸	2R, 4R, 7, 4L, 2L	4.3 (SD N/S)	N/S	20	10.0%	0.0%	0.0%	0.0%	
Meta-analysis 95% CI Heteroge					$6.0\% (4.8-7.5)$ $I^2 = 0\%$	$2.8\% (2.0-4.0)$ $I^2 = 0\%$	1.9% (1.1-3.2) $I^2 = 21\%$	0.5% (0.2-1.2) $I^2 = 0\%$	

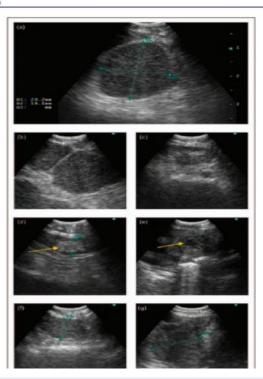
What's new in endobronchial ultrasound for mediastinal staging?

Mathieu Marcoux and David E. Ost

KEY POINTS

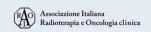
- Since the publication of the 2016 ACCP guideline, evidence has grown and significant advances have been made in EBUS-TBNA for lung cancer staging
- New findings have been identified in regards to:
 - ROSE
 - needle size
 - ultrasound lymph node characteristics,
 - molecular testing
 - practice patterns and gaps in quality of care
- Current gaps in knowledge highlight promising areas for future research.

Current Opinion in Pulmonary Medicine: July 2020 - Volume 26 - Issue 4 - p 346-



What's new in endobronchial ultrasound for mediastinal staging?

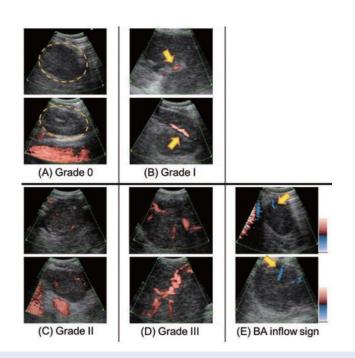
Mathieu Marcoux and David E. Ost

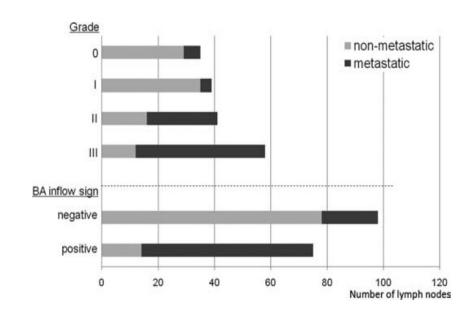

Neoplasms of the lung

Sum score prediction model for malignancy based on the following prespecified ultrasound characteristics:

- 1. Short axis >1 cm
- 2. Heterogeneous pattern
- 3. Round shape
- 4. Distinct margin
- 5. Absence of central hilar structure
- High blood flow within a lymph node (measured by the color power Doppler Index)

Final score obtained corresponded to the number of positive criteria. A score of 0–2 was classified 'low-risk' of malignancy, whereas a score of 3 to 6 was considered 'high-risk'. Presence of 3 or more ultrasound characteristics resulted in an odds ratio of 15.5 (95% CI: 3.63–66.17) for malignant lymph node involvement.

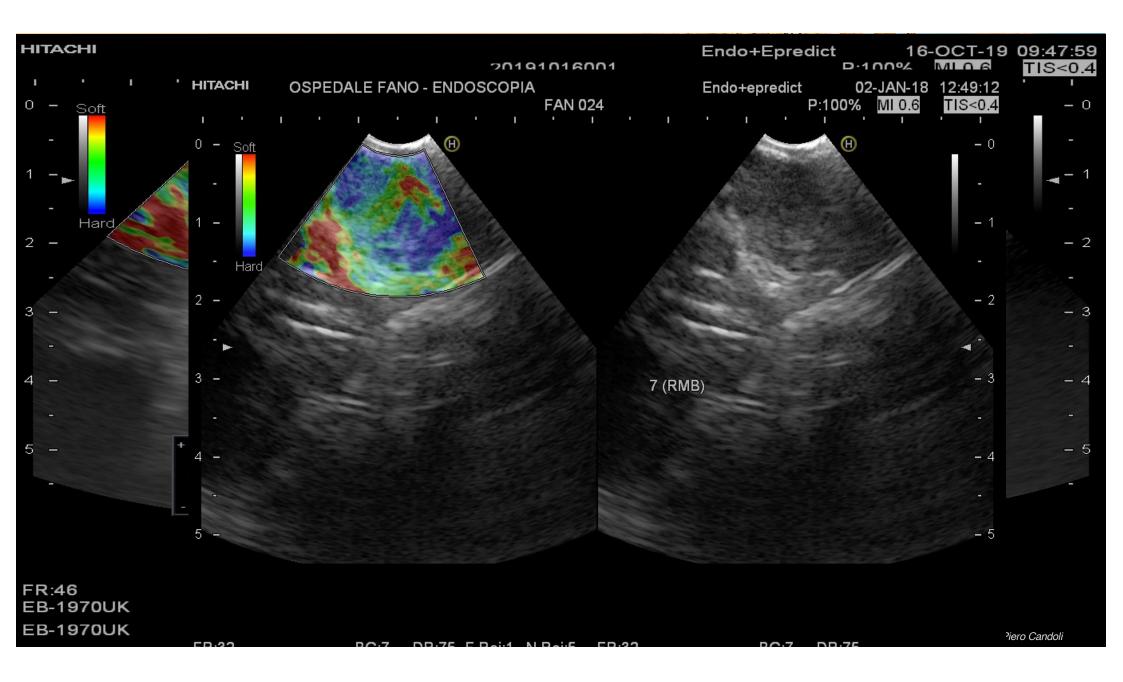


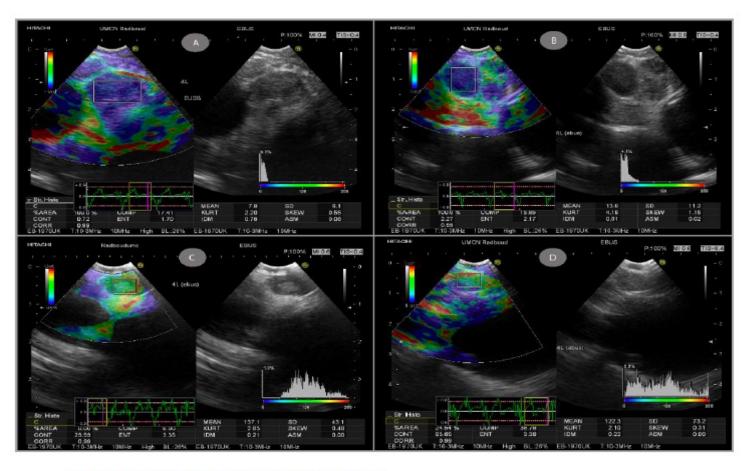


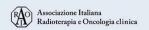
Vascular Image Patterns of Lymph Nodes for the Prediction of Metastatic Disease During EBUS-TBNA for Mediastinal Staging of Lung Cancer

Takahiro Nakajima, MD, PhD,*†‡ Takashi Anayama, MD, PhD,* Masato Shingyoji, MD, PhD,† Hideki Kimura, MD, PhD,† Ichiro Yoshino, MD, PhD,‡ and Kazuhiro Yasufuku, MD, PhD*

(J Thorac Oncol. 2012;7: 1009–1014)







EBUS elastography imaging

- a. 4L EUSb malignant
- b. 4L EBUS malignant
- c. 4L EBUS benign
- d. 4L EBUS benign

Verhoeven RLJ etal, Respiration 2019 - DOI: 10.1159/000494143

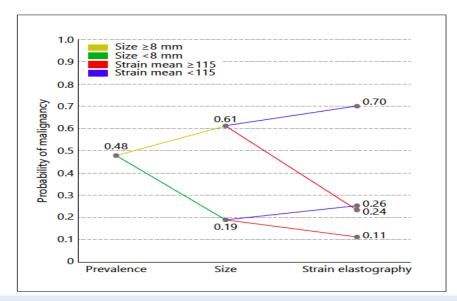
Interventional Pulmonology

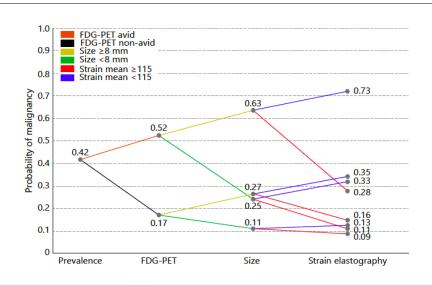
Respiration DOI: 10.1159/000507592 Received: January 14, 2020 Accepted: March 29, 2020 Published online: June 3, 2020

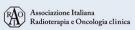
Predictive Value of Endobronchial Ultrasound Strain Elastography in Mediastinal Lymph Node Staging: The E-Predict Multicenter Study Results

Roel Lambertus Johannes Verhoeven^{a, b} Rocco Trisolini^{c, d} Fausto Leoncini^{d, e} Piero Candoli^f Michela Bezzi^e Alessandro Messi^g Mark Krasnik^h Chris L. de Korte^b Jouke T. Annemaⁱ Erik H.F.M. van der Heijden^a

È stato rilevato che una dimensione linfonodale di 8 mm in combinazione con un valore medio di cut-off di 115 stratificherebbero meglio il rischio di malignità. In tutti gli scenari in cui la PET-FDG e le dimensioni linfonodali sono state combinate, l'EBUS-SE ha aumentato o diminuito la probabilità di malignità rispettivamente nei casi di bassa ed elevata deformabilità




Interventional Pulmonology


Respiration DOI: 10.1159/000507592 Received: January 14, 2020 Accepted: March 29, 2020 Published online: June 3, 2020

Predictive Value of Endobronchial Ultrasound Strain Elastography in Mediastinal Lymph Node Staging: The E-Predict Multicenter Study Results

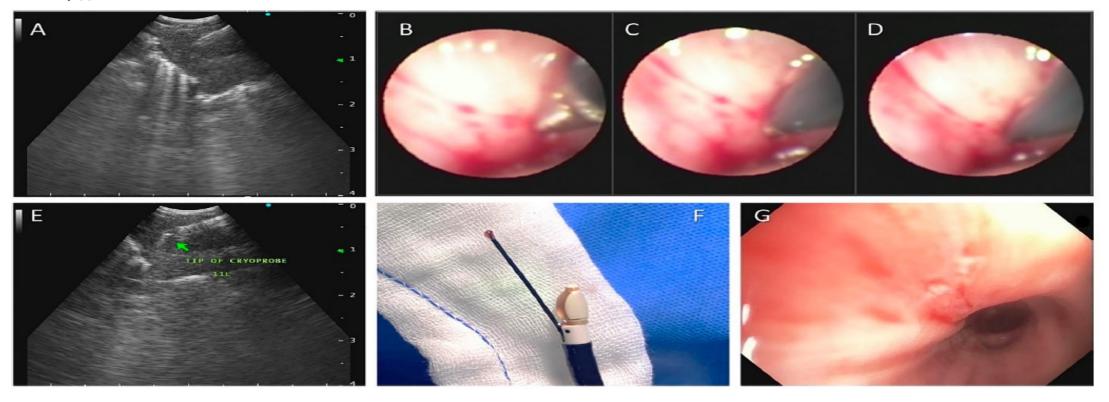
Roel Lambertus Johannes Verhoeven^{a, b}Rocco Trisolini^{c, d}Fausto Leoncini^{d, e} Piero Candoli^f Michela Bezzi^e Alessandro Messi^g Mark Krasnik^h Chris L. de Korte^b Jouke T. AnnemaⁱErik H.F.M. van der Heijden^a

Official Case Reports Journal of the Asian Pacific Society of Respirology

Respirology Case Reports OPEN CACCESS

Endobronchial ultrasound-quided transbronchial cryo-nodal biopsy: a novel approach for mediastinal lymph node sampling

Hari Kishan Gonuguntla O, Milap Shah , Nitesh Gupta O, Sumita Agrawal , Venerino Poletti & Gustavo Cumbo Nacheli⁶

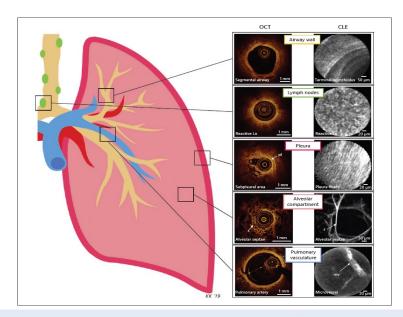

¹Department of Interventional Pulmonology, Yashoda Hospital, Hyderabad, India.

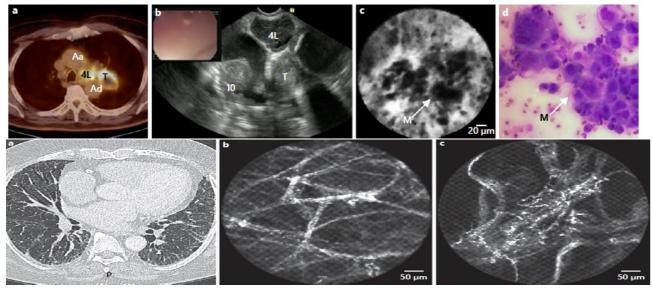
²Department of Laboratory Medicine, Yashoda Hospital, Hyderabad, India. ³Department of Pulmonary, Critical Care and Sleep Medicine, VMMC and Safdarjung Hospital, New Delhi, India.

⁴Department of Pulmonary, Critical Care and Sleep Medicine, Medipulse Hospital, Jodhpur, India.

⁵Department of Diseases of the Thorax, Ospedale GB Morgagni, Forli, Italy.

⁶Division of Bronchoscopy and Interventional Pulmonology, Pulmonary and Critical Care Division, Spectrum Health Medical Group, Grand Rapids, MI, USA.




Respiration 2020;99:190-205 DOI: 10.1159/000503261 Received: May 22, 2019 Accepted: September 5, 2019 Published online: October 8, 2019

Advances in Optical Coherence Tomography and Confocal Laser Endomicroscopy in Pulmonary Diseases

Annika Goorsenberg Kirsten A. Kalverda Jouke Annema Peter Bonta

Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

Lymph node structures

Metastatic lymph node



FIGURE 5 a-c) In vivo needle-based confocal laser endomicroscopy (nCLE) imaging of reactive lymph node structures with the e-g] corresponding histology image after surgical excision of the node. a) The dark background with bright fibre structure represents the capsular structures of a lymph node (indicated in e by the arrow). b) Homogenously distributed grey dots visualised in the cortex of a lymph node with homogenously shaped and sized lymphocytes $\{f\}$. c) Large dark bubbles represent adipocytes $\{g\}$. d) In vivo nCLE imaging of a metastatic lymph node with a background of cortex-appearance and a cluster of enlarged cells with h) corresponding cytology of the fine-needle aspirate revealing a cluster of malignant cells $\{M\}$ of a squamous cell carcinoma on a background of normal lymphocytes and erythrocytes. Scale bars: a-d, f-h) $\{M\}$ $\{M\}$

